

TLA-55 Rotor

Used in Beckman Coulter Optima™ MAX, MAX-E, TL, and TLX Series Tabletop Ultracentrifuges

© 2002 Beckman Coulter, Inc.

SAFETY NOTICE

This safety notice summarizes information basic to the safe use of the rotor described in this manual. The international symbol displayed above is a reminder to the user that all safety instructions should be read and understood before operation or maintenance of this equipment is attempted. When you see the symbol on other pages throughout this publication, pay special attention to the specific safety information presented. Observance of safety precautions will also help to avoid actions that could damage or adversely affect the performance of the rotor. This rotor was developed, manufactured, and tested for safety and reliability as part of a Beckman Coulter ultracentrifuge/rotor system. Its safety or reliability cannot be assured if used in a centrifuge not of Beckman Coulter's manufacture or in a Beckman Coulter ultracentrifuge that has been modified without Beckman's approval.

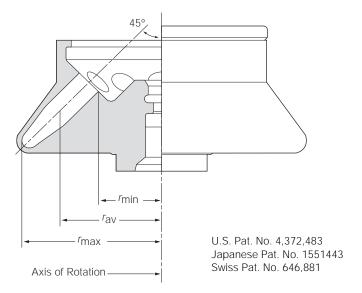
Handle body fluids with care because they can transmit disease. No known test offers complete assurance that such fluids are free of micro-organisms. Some of the most virulent—Hepatitis (B and C) viruses, HIV (I–V), atypical mycobacteria, and certain systemic fungi—further emphasize the need for aerosol protection. Handle other infectious samples according to good laboratory procedures and methods to prevent spread of disease. Because spills may generate aerosols, observe proper safety precautions for aerosol containment. Do not run toxic, pathogenic, or radioactive materials in this rotor without taking appropriate safety precautions. Biosafe containment should be used when Risk Group II materials (as identified in the *World Health Organization Laboratory Biosafety Manual*) are handled; materials of a higher group require more than one level of protection.

The rotor and accessories are not designed for use with materials capable of developing flammable or explosive vapors. Do not centrifuge such materials in nor handle or store them near the ultracentrifuge.

Although rotor components and accessories made by other manufacturers may fit in the TLA-55 rotor, their safety in this rotor cannot be ascertained by Beckman Coulter. Use of other manufacturers' components or accessories in the TLA-55 rotor may void the rotor warranty and should be prohibited by your laboratory safety officer. Only the components and accessories listed in this publication should be used in this rotor.

Do not run an empty rotor. Place filled tubes in at least two opposing cavities. Make sure that filled containers are loaded symmetrically into the rotor and that opposing tubes are filled to the same level with liquid of the same density. Make sure that cavities in use have the proper spacers and/or floating spacers inserted before installing the rotor lid.

If disassembly reveals evidence of leakage, you should assume that some fluid escaped the rotor. Apply appropriate decontamination procedures to the centrifuge and accessories.



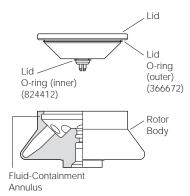
Never exceed the maximum rated speed of the rotor and labware in use. Refer to the section on RUN SPEEDS, and derate the run speed as appropriate.

Do not use sharp tools on the rotor that could cause scratches in the rotor surface. Corrosion begins in scratches and may open fissures in the rotor with continued use.

TLA-55 ROTOR

SPECIFICATIONS

Maximum speed
Density rating at maximum speed
Relative Centrifugal Field* at maximum speed
At r_{max} (55 mm)
At r_{av} (40 mm)
At r_{\min} (25 mm)
<i>k</i> factor at maximum speed
Conditions requiring speed reductions see RUN SPEEDS
Number of tube cavities
Nominal tube dimensions (largest tube)
Nominal tube capacity
Nominal rotor capacity
Approximate acceleration time to maximum
speed (fully loaded) 2 min
Approximate deceleration time from maximum
speed (fully loaded) 2 min
Weight of fully loaded rotor 0.8 kg (1.69 lb)
Rotor and lid material aluminum


^{*}Relative Centrifugal Field (RCF) is the ratio of the centrifugal acceleration at a specified radius and speed $(r\omega^2)$ to the standard acceleration of gravity (g) according to the following formula:

$$RCF = \frac{r\omega^2}{g}$$

where r is the radius in millimeters, ω is the angular velocity in radians per second (2 π RPM /60), and g is the standard acceleration of gravity (9807 mm/s²). After substitution:

$$RCF = 1.12 r \left(\frac{RPM}{1000}\right)^2$$

DESCRIPTION

This rotor has been manufactured in an NSAI-registered ISO 9001 or 9002 facility for use with the specified Beckman Coulter ultracentrifuge.

The TLA-55 fixed angle rotor, rated for 55 000 rpm, holds up to twelve 1.5-mL microcentrifuge tubes at a 45-degree angle. Used in the OptimaTM MAX, MAX-E, TL, and TLX series tabletop ultracentrifuges, this rotor develops sufficient centrifugal forces for a number of applications: it provides quick pelleting runs that preserve the bioactivity of a sample and it is an effective tool for recovery of fine precipitates.

The rotor and lid are made of aluminum and are anodized to resist corrosion. A plunger in the lid locks the rotor to the drive hub before beginning the run, and two lubricated O-rings made of Buna-N rubber maintain atmospheric pressure inside the rotor during centrifugation. The twelve tube cavities are numbered to aid in sample identification.

The rotor is specially designed with a fluid-containment annulus, located below the O-ring sealing surface. The annulus retains fluid that may escape from leaking or overfilled tubes, thereby preventing the liquid from escaping into the instrument chamber.

This rotor was tested¹ to demonstrate containment of microbiological aerosols under normal operating conditions of the associated Beckman Coulter centrifuge, when used and maintained as instructed.

The ultracentrifuge identifies rotor speed during the run by means of a magnetic speed sensor in the instrument chamber and magnets on the bottom of the rotor. This overspeed protection system ensures that the rotor does not exceed its maximum permitted speed.

See the Warranty at the back of this manual for warranty information.

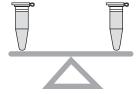
¹ Validation of microbiological containment was done at an independent third-party testing facility (CAMR, Porton Down, UK, or USAMRIID, Ft. Detrick, MD, U.S.A.). Improper use or maintenance may affect seal integrity and thus containment.

PREPARATION AND USE

Specific information about the TLA-55 rotor is given here. Information common to this and other rotors is contained in Rotors and Tubes for Tabletop Preparative Ultracentrifuges (publication TLR-IM), which should be used together with this manual for complete rotor and accessory operation. Publication TLR-IM is included in the literature package shipped with the rotor.

Although rotor components and accessories made by other manufacturers may fit in the TLA-55 rotor, their safety in this rotor cannot be ascertained by Beckman Coulter. Use of other manufacturers' components or accessories in the TLA-55 rotor may void the rotor warranty and should be prohibited by your laboratory safety officer. Only the components and accessories listed in this publication should be used in this rotor.

PRERUN SAFETY CHECKS


Read the Safety Notice page at the front of this manual before using the rotor.

- 1. Inspect the O-rings and plunger mechanism for damage—the high forces generated in this rotor can cause damaged components to fail.
- 2. Check the chemical compatibilities of all materials used (refer to Appendix A in *Rotors and Tubes*).

ROTOR PREPARATION

For runs at other than room temperature, refrigerate or warm the rotor beforehand for fast equilibration.

 Lightly but evenly lubricate metal threads with Spinkote™ lubricant (306812).

- 2. Apply a thin film of silicone vacuum grease (335148) to the two O-rings in the rotor lid.
- 3. Load the filled and capped tubes symmetrically into the rotor (see page 7 for tube information). If fewer than twelve tubes are being run, they must be arranged symmetrically in the rotor (see Figure 1). Opposing tubes must be filled to the same level with liquid of the same density.

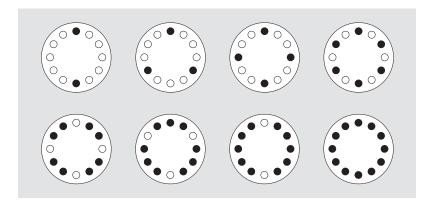


Figure 1. Arranging Tubes in the Rotor. Two, three, four, six, eight, nine, ten, or twelve tubes can be centrifuged per run if they are arranged in the rotor as shown.

OPERATION

- 1. Use an absorbent towel to wipe off condensation from the rotor, then carefully place the rotor on the drive hub.
- 2. Lock the rotor in place by gently pressing the plunger down until you feel it click. When you remove your finger, the plunger will remain flush with the rotor body if it is properly engaged. If the plunger pops up, repeat the procedure.

CAUTION

In all ultracentrifuge models except the Optima MAX or MAX-E, it is very important to lock the rotor in place before beginning the run to ensure that the rotor remains seated during centrifugation. Failure to lock the rotor in place before beginning the run may result in damage to both rotor and instrument.

- 3. Refer to the instrument instruction manual for ultracentrifuge operation.
- 4. For additional operating information, see the following:
 - RUN TIMES, page 8, for using *k* factors to adjust run durations.
 - RUN SPEEDS, page 9, for information about speed limitations.
 - SELECTING CsCl GRADIENTS, page 11, for methods to avoid CsCl precipitation during centrifugation.

REMOVAL AND SAMPLE RECOVERY

CAUTION

If disassembly reveals evidence of leakage, you should assume that some fluid escaped the rotor. Apply appropriate decontamination procedures to the centrifuge and accessories.

- 1. To release the plunger at the end of the run, gently press it down until you feel it click. When you remove your finger the plunger will pop up to its released position.
- 2. Remove the rotor from the ultracentrifuge and remove the lid.
- 3. Use a hemostat or tube removal tool to remove the tubes.

TUBES

The TLA-55 rotor uses 1.5-mL Microfuge® tubes. These tubes are made of polyallomer and have attached caps and conical bottoms.

Temperature Limits

- Plastic tubes have been centrifuge tested for use at temperatures between 2 and 25°C. For centrifugation at other temperatures, pretest tubes under anticipated run conditions.
- If tubes are frozen before use, make sure that they are thawed to at least 2°C prior to centrifugation.

RUN TIMES

TIME HR:MIN

03:30

The k factor of the rotor is a measure of the rotor's pelleting efficiency. (Beckman Coulter has calculated the k factors for all of its preparative rotors at maximum rated speed and using full tubes.) The k factor is calculated from the formula:

$$k = \frac{\ln(r_{\text{max}}/r_{\text{min}})}{\omega^2} \times \frac{10^{13}}{3600}$$
 (1)

where ω is the angular velocity of the rotor in radians per second ($\omega = 0.105 \times \text{rpm}$), r_{max} is the maximum radius, and r_{min} is the minimum radius.

After substitution:

$$k = \frac{(2.533 \times 10^{11}) \ln(r_{\text{max}}/r_{\text{min}})}{\text{rpm}^2}$$
 (2)

Use the k factor in the following equation to estimate the run time t (in hours) required to pellet particles of known sedimentation coefficient s (in Svedberg units, S).

$$t = \frac{k}{s} \tag{3}$$

Run times can be estimated for centrifugation at less than maximum speed by adjusting the k factor as follows:

$$k_{\text{adj}} = k \left(\frac{55\ 000}{\text{actual run speed}} \right)^2 \tag{4}$$

Run times can also be estimated from data established in prior experiments if the k factor of the previous rotor is known. For any two rotors, a and b:

$$\frac{t_{\mathbf{a}}}{t_{\mathbf{b}}} = \frac{k_{\mathbf{a}}}{k_{\mathbf{b}}} \tag{5}$$

For more information on *k* factors see publication DS-719, *Use of* k *Factor for Estimating Run Times from Previously Established Run Conditions*.

RUN SPEEDS

SPEED RPM/RCF

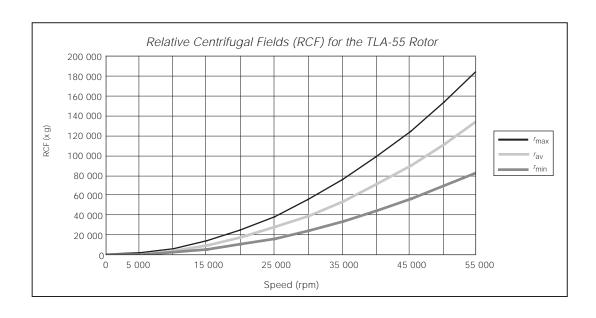
55 000 RPM

The centrifugal force at a given radius in a rotor is a function of speed. Comparisons of forces between different rotors are made by comparing the rotors' relative centrifugal fields (RCF). When rotational speed is adjusted so that identical samples are subjected to the same RCF in two different rotors, the samples are subjected to the same force. The RCF at a number of rotor speeds is provided in Table 1.

Speeds must be reduced under the following circumstances:

1. If nonprecipitating solutions more dense than 1.7 g/mL are centrifuged, the maximum allowable run speed must be reduced according to the following equation:

reduced maximum speed = (55 000 rpm)
$$\sqrt{\frac{1.7 \text{ g/mL}}{\rho}}$$
 (6)


where ρ is the density of the tube contents. This speed reduction will protect the rotor from excessive stresses due to the added tube load. *Note, however, that the use of this formula may still produce maximum speed values that are higher than the limitations imposed by the use of certain tubes or adapters.* In such cases, use the lower of the two values.

2. Further speed limits must be imposed when CsCl or other self-forming-gradient salts are centrifuged, as equation (6) does not predict concentration limits/speeds that are required to avoid precipitation of salt crystals. Precipitation during centrifugation would alter the density distribution of CsCl and this would change the position of the sample bands. Figures 2 and 3, together with the description and examples below, show how to reduce run speeds when using CsCl gradients.

Table 1. Relative Centrifugal Fields for the TLA-55 Rotor. Entries in this table are calculated from the formula $RCF = 1.12r (RPM/1000)^2$ and then rounded to three significant digits.

	Relative Centrifugal Field (× g)			
Rotor Speed (rpm)	At <i>r</i> _{max} (71.1 mm)	At <i>r</i> _{av} (61.8 mm)	At <i>r</i> _{min} (52.4 mm)	k Factor*
55 000	186 000	136 000	84 700	66
50 000	154 000	112 000	70 000	80
45 000	125 000	90 700	56 700	99
40 000	98 600	71 700	44 800	125
35 000	75 500	54 900	34 300	154
30 000	55 400	40 300	25 200	222
25 000	38 500	28 000	17 500	320
20 000	24 600	17 900	11 200	499
15 000	13 900	10 100	6 300	888
10 000	6 160	4 480	2 800	1 997
5 000	1 540	1 120	700	7 989

^{*}Calculated for all Beckman Coulter preparative rotors as a measure of the rotor's relative efficiency in pelleting sample in water at 20° C.

SELECTING CsCl GRADIENTS

Precipitation during centrifugation would alter density distribution, and this would change the position of the sample bands. Curves in Figures 2 and 3 are provided up to the maximum rated speed of the rotor.

The curves in Figures 2 and 3 are for solutions of CsCl salt dissolved in distilled water only. If other salts are present in significant concentrations, the overall CsCl concentration may need to be reduced.

Rotor speed is used to control the slope of a CsCl density gradient, and must be limited so that CsCl precipitation is avoided. Speed and density combinations that intersect on or below the curves in Figure 2 ensure that CsCl will not precipitate during centrifugation in the TLA-55 rotor. Curves are provided at two temperatures: 20°C (black curves) and 4°C (gray curves).

The reference curves in Figure 3 show gradient distribution at equilibrium. Each curve in Figure 3 is within the density limits allowed for the TLA-55 rotor: each curve was generated for a single run speed using the maximum allowable homogeneous CsCl densities (one for each fill level) that avoid precipitation at that speed. (The gradients in Figure 3 can be generated from step or linear gradients, or from homogeneous solutions. But the total amount of CsCl in solution must be equivalent to a homogeneous solution corresponding to the concentrations specified in Figure 2.)

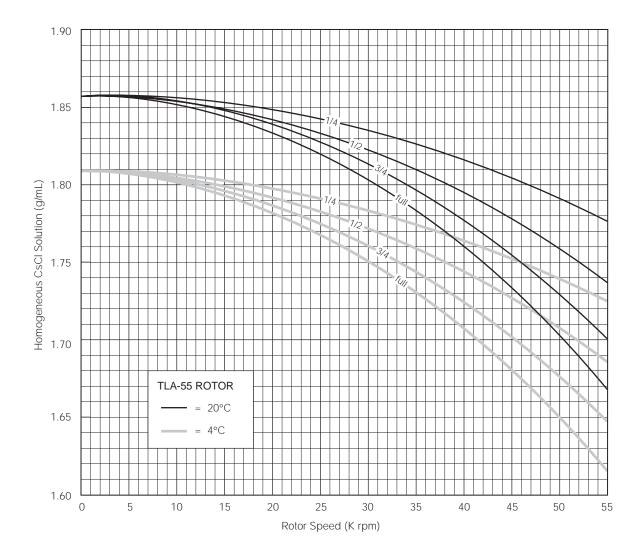


Figure 2. Precipitation Curves for the TLA-55 Rotor. Using combinations of rotor speeds and homogeneous CsCl solution densities that intersect on or below these curves ensures that CsCl will not precipitate during centrifugation.

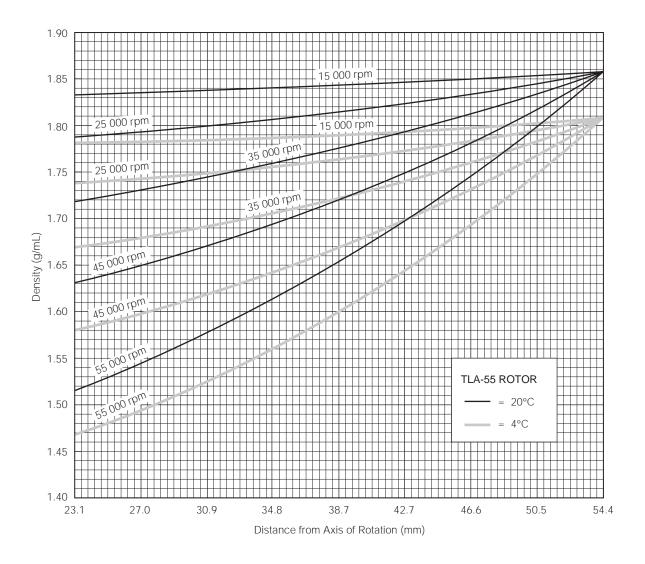
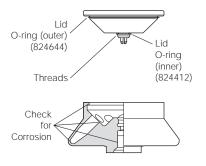



Figure 3. CsCl Gradients at Equilibrium for the TLA-55 Rotor. Centrifugation of homogeneous CsCl solutions at the maximum allowable speeds (from Figure 2) results in gradients presented here.

CARE AND MAINTENANCE

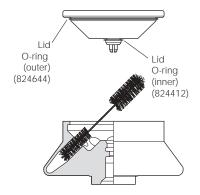
MAINTENANCE

Do not use sharp tools on the rotor that could cause scratches in the rotor surface. Corrosion begins in scratches and may open fissures in the rotor with continued use.

- Regularly lubricate the metal threads in the rotor with a thin, even coat of Spinkote lubricant. Failure to keep these threads lubricated can result in damaged threads.
- Regularly apply silicone vacuum grease to the O-rings. Replace O-rings about twice a year or whenever worn or damaged.

Refer to Appendix A in *Rotors and Tubes* for the chemical resistances of rotor and accessory materials. Your Beckman Coulter representative provides contact with the Field Rotor Inspection Program and the rotor repair center.

CLEANING


Wash the rotor and rotor components immediately if salts or other corrosive materials are used or if spillage has occurred. Do not allow corrosive materials to dry on the rotor.

Under normal use, wash the rotor frequently (at least weekly) to prevent buildup of residues.

1. Wash the rotor and lid in a mild detergent, such as Beckman Solution 555TM, that won't damage the rotor. The Rotor Cleaning Kit contains two plastic-coated brushes and two quarts of Solution 555 for use with rotors and accessories. Dilute the detergent 10 to 1 with water.

	NOTE
--	------

Do not wash rotor components in a dishwasher. Do not soak in detergent solution for long periods, such as overnight.

- 3. Rinse the cleaned rotor and components with distilled water.
- 4. Air-dry the rotor and lid upside down. *Do not use acetone to dry the rotor*.

Clean metal threads as necessary (at least every 6 months). Use a brush and concentrated Solution 555. Rinse and dry thoroughly, then lubricate lightly but evenly with Spinkote to coat all threads.

DECONTAMINATION

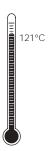
Rotors contaminated with radioactive or pathogenic materials must be decontaminated, following appropriate laboratory safety guidelines and/or other regulations.

Strong bases and/or high-pH solutions can damage aluminum rotors and components.

• If a rotor (and/or accessories) becomes contaminated with radioactive material, it should be decontaminated using a solution that will not damage the anodized surfaces. Beckman Coulter has tested a number of solutions and found two that do not harm anodized aluminum: RadCon Surface Spray or IsoClean Solution (for soaking),² and Radiacwash.³

IsoClean can cause fading of colored anodized surfaces. Use it only when necessary, and do not soak rotor components longer than the minimum time specified in the IsoClean usage instructions. Then remove it promptly from surfaces.

² Un U.S.A., contact Nuclear Associates (New York); in Eastern Europe and Commonwealth States, contact Victoreen GmbH (Munich); in South Pacific, contact Gammasonics Pty. Ltd. (Australia); in Japan, contact Toyo Medic Co. Ltd. (Tokyo).


³ In U.S.A., contact Biodex Medical Systems (Shirley, NY); internationally, contact the U.S. office to find the dealer nearest you.

While Beckman Coulter has tested these methods and found that they do not damage components, no guarantee of decontamination is expressed or implied. Consult your laboratory safety officer regarding the proper decontamination methods to use.

• If the rotor or other components are contaminated with toxic or pathogenic materials, follow appropriate decontamination procedures as outlined by appropriate laboratory safety guidelines and/or other regulations. Consult Appendix A in *Rotors and Tubes* to select an agent that will not damage the rotor.

STERILIZATION AND DISINFECTION

- The rotor and all rotor components can be autoclaved at 121°C for up to an hour. Remove the lid and O-rings from the rotor and place the rotor and lid in the autoclave upside down.
- Ethanol (70%)⁴ or hydrogen peroxide (6%) may be used on all rotor components, including those made of plastic. Bleach (sodium hypochlorite) may be used, but may cause discoloration of anodized surfaces. Use the minimum immersion time for each solution, per laboratory standards.

While Beckman Coulter has tested these methods and found that they do not damage the rotor or components, no guarantee of sterility or disinfection is expressed or implied. When sterilization or disinfection is a concern, consult your laboratory safety officer regarding proper methods to use.

STORAGE

When it is not in use, store the rotor in a dry environment (not in the instrument) with plugs removed to allow air circulation so moisture will not collect in the tube cavities.

⁴ Flammability hazard. Do not use in or near operating ultracentrifuges.

RETURNING A ROTOR

Before returning a rotor or accessory for any reason, prior permission (a Returned Goods Authorization form) must be obtained from Beckman Coulter, Inc. This RGA form may be obtained from your local Beckman Coulter sales office, and should contain the following information:

- · serial number,
- history of use (approximate frequency of use),
- reason for the return,
- original purchase order number, billing number, and shipping number, if possible,
- name and phone number of the person to be notified upon receipt of the rotor or accessory at the factory,
- name and phone number of the person to be notified about repair costs, etc.

To protect our personnel, it is the customer's responsibility to ensure that all parts are free from pathogens and/or radioactivity. Sterilization and decontamination must be done before returning the parts. Smaller items (such as tubes, bottles, etc.) should be enclosed in a sealed plastic bag.

All parts must be accompanied by a note, plainly visible on the outside of the box or bag, stating that they are safe to handle and that they are not contaminated with pathogens or radioactivity. Failure to attach this notification will result in return or disposal of the items without review of the reported problem.

Use the address label printed on the RGA form when mailing the rotor and/or accessories to:

Beckman Coulter, Inc. 1050 Page Mill Road Palo Alto, CA 94304

Attention: Returned Goods

Customers located outside the United States should contact their local Beckman Coulter office.

SUPPLY LIST

To obtain copies of referenced publications, contact Beckman Coulter, Inc., Technical Publications Department, 1050 Page Mill Road, Palo Alto, CA 94304, U.S.A. (telephone 650-859-1753; fax 650-859-1375).

See the *Ultracentrifuge Rotors, Tubes & Accessories* catalog (BR-8101, available at www.beckmancoulter.com) or contact Beckman Coulter Sales (1-800-742-2345 in the United States) or your local Beckman Coulter office for detailed information on ordering parts and supplies. For your convenience, a partial list is given below.

REPLACEMENT ROTOR PARTS

TLA-55 rotor assembly	366720
Lid assembly	366722
Lid O-ring (outer)	824644
Lid O-ring (inner)	824412

OTHER

Microfuge® 1.5-mL tubes (box of 500)	357448
Tube removal tool	
Spinkote lubricant (1 oz)	306812
Silicone vacuum grease (2 oz)	335148
Rotor Cleaning Kit	339558
Beckman Solution 555 (1 qt)	339555
Rotor cleaning brush	347404

ULTRACENTRIFUGE ROTOR WARRANTY

All Beckman Coulter ultracentrifuge Fixed Angle, Vertical Tube, Near Vertical Tube, Swinging Bucket, and Airfuge rotors are warranted against defects in materials or workmanship for the time periods indicated below, subject to the Warranty Conditions stated below.

Preparative Ultracentrifuge Rotors 5 years — No Proration

Analytical Ultracentrifuge Rotors 5 years — No Proration

ML and TL Series Ultracentrifuge
Rotors 5 years — No Proration

Airfuge Ultracentrifuge Rotors 1 year — No Proration

For Zonal, Continuous Flow, Component Test, and Rock Core ultracentrifuge rotors, see separate warranty.

Warranty Conditions (as applicable)

- This warranty is valid for the time periods indicated above from the date of shipment to the original Buyer by Beckman Coulter or an authorized Beckman Coulter representative.
- This warranty extends only to the original Buyer and may not be assigned or extended to a third person without written consent of Beckman Coulter.
- 3) This warranty covers the Beckman Coulter Centrifuge Systems only (including but not limited to the centrifuge, rotor, and accessories) and Beckman Coulter shall not be liable for damage to or loss of the user's sample, non-Beckman Coulter tubes, adapters, or other rotor contents.
- 4) This warranty is void if the Beckman Coulter Centrifuge System is determined by Beckman Coulter to have been operated or maintained in a manner contrary to the instructions in the operator's manual(s) for the Beckman Coulter Centrifuge System components in use. This includes but is not limited to operator misuse, abuse, or negligence regarding indicated maintenance procedures, centrifuge and rotor classification requirements, proper speed reduction for the high density of certain fluids, tubes, and tube caps, speed reduction for precipitating gradient materials, and speed reduction for high-temperature operation.
- 5) Rotor bucket sets purchased concurrently with or subsequent to the purchase of a Swinging Bucket Rotor are warranted only for a term co-extensive with that of the rotor for which the bucket sets are purchased.
- 6) This warranty does not cover the failure of a Beckman Coulter rotor in a centrifuge not of Beckman Coulter manufacture, or if the rotor is used in a Beckman Coulter centrifuge that has been modified without the written permission of Beckman Coulter, or is used with carriers, buckets, belts, or other devices not of Beckman Coulter manufacture.
- 7) Rotor parts subject to wear, including but not limited to rotor O-rings, VTi, NVTTM, TLV, MLN, and TLN rotor tube cavity plugs and gaskets, tubing, tools, optical overspeed disks, bearings, seals, and lubrication are excluded from this warranty and should be frequently inspected and replaced if they become worn or damaged.
- Keeping a rotor log is not mandatory, but may be desirable for maintenance of good laboratory practices.

Repair and Replacement Policies

- If a Beckman Coulter rotor is determined by Beckman Coulter to be defective, Beckman Coulter will repair or replace it, subject to the Warranty Conditions. A replacement rotor will be warranted for the time remaining on the original rotor's warranty.
- 2) If a Beckman Coulter centrifuge is damaged due to a failure of a rotor covered by this warranty, Beckman Coulter will supply free of charge (i) all centrifuge parts required for repair (except the drive unit, which will be replaced at the then current price less a credit determined by the total number of revolutions or years completed, provided that such a unit was manufactured or rebuilt by Beckman Coulter), and (ii) if the centrifuge is currently covered by a Beckman Coulter warranty or Full Service Agreement, all labor necessary for repair of the centrifuge.
- 3) If a Beckman Coulter rotor covered by this warranty is damaged due to a malfunction of a Beckman Coulter ultracentrifuge covered by an Ultracentrifuge System Service Agreement, Beckman Coulter will repair or replace the rotor free of charge.
- 4) If a Beckman Coulter rotor covered by this warranty is damaged due to a failure of a Beckman Coulter tube, bottle, tube cap, spacer, or adapter, covered under the Conditions of this Warranty, Beckman Coulter will repair or replace the rotor and repair the instrument as per the conditions in policy point (2) above, and the replacement policy.
- 5) Damage to a Beckman Coulter rotor or instrument due to the failure or malfunction of a non-Beckman Coulter tube, bottle, tube cap, spacer, or adapter is not covered under this warranty, although Beckman Coulter will assist in seeking compensation under the manufacturer's warranty.

Disclaimer

IT IS EXPRESSLY AGREED THAT THE ABOVE WARRANTY SHALL BE IN LIEU OF ALL WARRANTIES OF FITNESS AND OF THE WARRANTY OF MERCHANTABILITY AND BECKMAN COULTER, INC. SHALL HAVE NO LIABILITY FOR SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER ARISING OUT OF THE MANUFACTURE, USE, SALE, HANDLING, REPAIR, MAINTENANCE, OR REPLACEMENT OF THE PRODUCT.

Factory Rotor Inspection Service

Beckman Coulter, Inc., will provide free mechanical and metallurgical inspection in Palo Alto, California, USA, of any Beckman Coulter rotor at the request of the user. (Shipping charges to Beckman Coulter are the responsibility of the user.) Rotors will be inspected in the user's laboratory if the centrifuge in which they are used is covered by an appropriate Beckman Coulter Service Agreement. Contact your local Beckman Coulter office for details of service coverage or cost.

Before shipping, contact the nearest Beckman Coulter Sales and Service office and request a Returned Goods Authorization (RGA) form and packaging instructions. Please include the complete rotor assembly, with buckets, lid, handle, tube cavity caps, etc. A SIGNED STATEMENT THAT THE ROTOR AND ACCESSORIES ARE NON-RADIOACTIVE, NON-PATHOGENIC, NON-TOXIC, AND OTHERWISE SAFE TO SHIP AND HANDLE IS REQUIRED.

Beckman Coulter Worldwide Life Science Research Division Offices

AUSTRALIA

Beckman Coulter Australia Pty Ltd Unit D, 24 College St. Gladesville, NSW 2111

Australia

Telephone: (61) 2 9844-6000 or toll free: 1 800 060 880 Fax: (61) 2 9844-6096

email: lifescienceaustralia@beckman.com

CANADA

Beckman Coulter (Canada) Inc. 6755 Mississauga Road, Suite 600 Mississauga, Ontario Canada L5N 7Y2

Telephone: (905) 819-1234 Fax: (905) 819-1485

CHINA

Beckman Coulter Inc. Beijing Representative Office Unit 2005A, 2006-2009, East Ocean Center Jian Guomenwai Avenue

Beijing 100004 China

Telephone: (86) 10 6515 6028 Fax: (86) 10 6515 6025, 6515 6026

EASTERN EUROPE/ MIDDLE EAST/NORTH AFRICA

Beckman Coulter International S.A. 22, Rue Juste-Olivier Case Postale 301-303 CH-1260 Nyon, Switzerland Telephone: (41) 22 994 07 07 Fax: (41) 22 994 07 00

FRANCE

Beckman Coulter France S.A. Paris Nord II, 33/66 rue des Vanesses B.P. 50359 Villepinte, France

95942 ROISSY CDG Cedex Telephone: 01 49 90 90 00 Fax: 01 49 90 90 10

e-mail: bioresearch.france@beckman.com

GERMANY

Beckman Coulter GmbH Siemensstrasse 1 D-85716 Unterschleissheim-Lohhof Germany

Telephone: (89) 35870-0 Fax: (89) 35870-490

e-mail: bioresearch.de@beckman.com

BECKMAN COULTER_{TM} HONG KONG

Beckman Coulter Hong Kong Ltd. 12th Floor, Oxford House 979 King's Road Taikoo Place, Hong Kong

Telephone: (852) 2814 7431, 2814 0481 Fax: (852) 2814 1599, 2873 4511

ITALY

Beckman Coulter S.p.a. Centro Direzionale Lombardo Palazzo F/1, Via Roma 108 20060 Cassina de' Pecchi

Milano, Italy **Telephone: 02-953921 Fax: 02-95392264**

JAPAN

Beckman Coulter K.K. Toranomon 37 Mori Bldg. 3-5-1, Toranomon Minato-ku, Tokyo 105-0001 Japan

Telephone: 03-5404-8359 Fax: 03-5404-8436

MEXICO

Beckman Coulter de Mexico S.A. DE C.V. Avenida Popocatépetl #396 Colonia Gral. Pedro Maria Anaya Codigo Postal 03340 Maxico, D.F. / Mexico City

Maxico, D.F. / Mexico City Telephone: 525 605-77-70 Fax: 525 575-18-25

NETHERLANDS

Beckman Coulter Nederland B.V. Nijverheidsweg 21 3641 RP-Mijdrecht Postbus 47 3640 AA Mijdrecht The Netherlands

Telephone: 0297-230630 Fax: 0297-288082

SINGAPORE

Beckman Coulter Singapore Pte. Ltd. 116 Changi Road Unit #03-01/02

Singapore 419718 Telephone: (65) 6339 3633 Fax: (65) 6336 6303

SOUTH AFRICA/SUB-SAHARAN AFRICA

Beckman Coulter Stand 1A Primegro Park Tonetti Street 1685 Halfway House Johannesburg Republic of South Africa Telephone: (27) 11-805-2014/5 Fax: (27) 11-805-4120

e-mail: beckman@intekom.co.za

SPAIN

Beckman Coulter España S.A. C/ Caleruega, 81 28033 Madrid, Spain Telephone: (34) 91 3836080 Fax: (34) 91 3836096

email: bioresearch.espana@beckman.com

SWEDEN

Beckman Coulter AB Archimedesvaegen 7 Box 111 56 SE-168 11 Bromma Sweden

Telephone: (0)8 564 85 900 Telefax: (0)8 564 85 901

SWITZERLAND

Beckman Coulter International S.A. 22, Rue Juste-Olivier Case Postale 301-303 CH-1260 Nyon Switzerland

Telephone: 0800 850 810 Fax: 0848 850 810

TAIWAN

Beckman Coulter Taiwan Inc. Taiwan Branch 8th Floor 216 Tun Hwa South Road, Section 2 Taipei 106, Taiwan

Republic of China

Telephone: (886) 2 2378 3456 Fax: (886) 2 2377 0408

TURKEY

Beckman Coulter Ltd. E-5 Yanyol Faith Cad. 81410 Soganlik Kartal Istanbul Turkey

Telephone: 90 216 309 1900 Fax: 90 216 309 0090

UNITED KINGDOM

Beckman Coulter United Kingdom Ltd Oakley Court Kingsmead Business Park London Road High Wycombe Buckinghamshire HP11 1JU

England, U.K.

Telephone: 01494 441181 Fax: 01494 447558

e-mail: beckman_uk@beckman.com

Authorized dealers in other countries.

Beckman Coulter, Inc. • 4300 N. Harbor Boulevard, Box 3100 • Fullerton, California 92834-3100
Sales: 1-800-742-2345 • Service: 1-800-551-1150 • Internet: www.beckmancoulter.com • Telex: 678413 • Fax: 1-800-643-4366

