Sorina Popescu
Discovering and Validating Protein Interactions

Boyce Thompson Institute
Mission: To advance and communicate scientific knowledge in plant biology to improve agriculture, protect the environment, and enhance human health
Protein Interactions Underlie Most Cellular Processes

• Within a species
 – Protein complexes and molecular machines
 – Stable complexes and transient/sequential protein interactions
 – Required for normal metabolism and development
 – Parts of dynamic pathways and responses to the environment

• Across species
 – Host-pathogen interactions
 – Defense responses to proteins from disease and insect pathogens (e.g. effectors)
Identifying Protein Interactions

• **Functional Protein Microarrays**
 – Proteins expressed in plants and printed on a glass slide (microarray)
 – Can detect interactions
 • Proteins
 • Small Molecules
 – Can explore enzymatic reactions
 • Autophosphorylation, ubiquitination
 • Find substrate for query enzyme

• **Split Luciferase Complementation**
 – Genes cloned as fusion constructs with Renilla luciferase
 • Bait: C-terminal half
 • Prey: N-terminal half
 – Transfected into protoplasts
 – Luciferase activity (light) if proteins interact
Functional Protein Microarrays

• Full-length cDNA libraries – His/Myc tagged
 – ATEC – 7000 ORFs
 – Expressed in N. benthamiana, purified and printed

• Printed microarrays now available through TAIR
Protein Binding

- Printed proteins – Myc tagged, expressed in *N. benthamiana* and printed onto slide
- Query protein – His tagged, purified from transiently transfected *N. benthamiana*

Experimental: FLS2
Negative Control: BSA
Loading Control: Anti-Myc
Other Examples

• **Ca^{2+}**-dependent calmodulin binding

Potential calmodulin targets on microarray are reacted with indicated calmodulin (or control) in the presence of calcium

• **Identification and validation of MKK substrates***

Phosphorylation substrate (MBP) aliquoted in microtiter plates and mixed with MPKs and MKKs.

* Or, which MPKs are activated by which MKKs?
Other Examples

- Salicylic acid (small molecule) binding

Salicylic Acid – a small molecule with key roles in stress resistance

Validation

<table>
<thead>
<tr>
<th></th>
<th>SABP2</th>
<th>MES9</th>
<th>cSABP1</th>
<th>cSABP2</th>
<th>cSABP3</th>
<th>cSABP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4aSA</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

AzSA | Negative Control | Immunoassay

XL: UV Cross-linking
4aSA: labeled salicylic acid

Magali Moreau

BTI Technology Transfer
Identifying Effector Targets to Enhance Plant Disease Resistance

Effectors: Pathogen proteins that thwart plant basal immune response

R-proteins: Plant resistance proteins that interact with effectors to cause a vigorous immune response

Original figure: http://www.nature.com/nchembio/journal/v5/n5/full/nchembio.164.html
Split Luciferase - Constructs

- Construct library of full-length cDNAs, fused to N-terminal part of *Renilla* luciferase (preys)
 - Focus on kinases, which are likely effector targets
- Create fusion of effector protein gene to C-terminal part of *Renilla* luciferase (bait)
Split Luciferase – Protoplast Transfection

Optimization

Time after transfection

Protoplasts

[Plasmid DNA]
Validating the Assay

<table>
<thead>
<tr>
<th>Effector</th>
<th>AvrPto</th>
<th>AvrPto</th>
<th>AvrPto</th>
<th>AvrPto</th>
<th>AvrPto</th>
<th>HopM1</th>
<th>HopM1</th>
<th>HopM1</th>
<th>HopM1</th>
<th>HopM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinase</td>
<td>Pto</td>
<td>Pto</td>
<td>AtBak1</td>
<td>AtFls2</td>
<td>Fen</td>
<td>SIMPK4</td>
<td>Pto</td>
<td>Pto</td>
<td>Bak1</td>
<td>Fls2</td>
</tr>
<tr>
<td>Expected</td>
<td>Pto</td>
<td>Pto</td>
<td>AtBak1</td>
<td>AtFls2</td>
<td>Fen</td>
<td>SIMPK4</td>
<td>Pto</td>
<td>Pto</td>
<td>Bak1</td>
<td>Fls2</td>
</tr>
</tbody>
</table>

Conflicting results in the literature

Positive Reference
Identifying New Effector Targets

Tomato MPK4, MPK6, and BSK7 interact with HopAl1 and HopF2

Functional validation: Silencing *N. benthamiana* BSK7 decreases immune response

Assay:
Cell-death protection assay:
1) Infiltrate to induce immunity
 Wait 2 days
2) Infiltrate to test immunity in overlapping regions

Quantification of the Cell-death Suppression assay

Infiltration of Nb leaves

P. fluorescens
Weak pathogen

P. syringae DC3000
Strong pathogen

Immune response (No Cell Death)

No Immune response (Heavy Cell Death)
Two approaches for protein interactions

- **Functional Protein Microarrays**
 - *In vitro* interactions
 - Requires a direct/binary interaction
 - Amenable to high throughput
 - Can be used for diverse applications
 - Proteins
 - Small Molecules
 - Enzymatic reactions
 - References

- **Split Luciferase Complementation**
 - *In vivo* system
 - Sensitive – may detect complexes if other subunits are present in protoplasts
 - Medium-throughput
 - Does not require protein production/purification